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DETERMINATION OF STABILITY DERIVATIVES FROM FLIGHT DATA
USING A NEWTON-RAPHSON MINIMIZATION TECHNIQUE

Kenneth W, Iliff and Lawrence W, Taylor, Jr,
Flight Research Center

INTRODUCTION

Identifying a system which will accurately and reliably determine the stability and
control derivatives (i, e, , coefficients of the differential equations of motion) of air-
planes from flight data remains difficult and time consuming, despite the considerable
effort that has been devoted to it over the years. There is no lack of methods to deter-
mine stability derivatives from flight data; on the contrary, many methods have been
tried, and under idealized conditions most have been successful, Unfortunately,
however, inadequate aircraft excitation, instrumentation and measurement noise, and
departures of the actual airplane from the model used for the airplane dynamics.
generally cause considerable error in the resulting estimates.

Among the methods available to solve this problem, the simplified-equations,
time-vector (ref. 1), analog-matching (refs. 1 and 2), and regression methods
(refs. 3 and 4) have been used most extensively. The simplified-equations and time-
vector methods are often severely limited because the set of aerodynamic coefficients
obtainable is incomplete and the types of applicable responses are restricted, The
analog-matching method is also limited because estimates resulting from it vary with
the skill and technique of the operator, The accuracy of the coefficients estimated by
the regression methods is unreliable if measurement noise on the response is exces-
sive or maneuvers are poorly conditioned.

Of most interest is the possibility of obtaining a linear model which results in a
computed response that best fits the measured data. Analog matching imitates this
approach, but the estimates reflect the operator's judgment. Regression methods
minimize the integral-squared error in fitting the measured data to a linear model of
the system point by point in an algebraic sense, ignoring the time-sequential nature
of the aircraft and model responses, Many of these difficulties can be circumvented
intuitively by minimizing the weighted integral-squared error of the difference between
the computed and measured response, The standard gradient technique (ref. 5) can be
used for this minimization, but this technique has been found to converge much too
slowly. Consequently, a modified form of the Newton-Raphson technique (ref. 5) was
investigated as a means of obtaining more rapid convergence, This method could also
be viewed as an application of quasi-linearization (ref, 6).

This report compares the results obtained by using the modified Newton-Raphson
technique of minimization with the results obtained from simplified-equations,
analog-matching, and regression methods for a representative lateral-directional
flight maneuver, The proposed method is applied to obtain stability and control



derivatives for vehicles encompassing the geometric and flight extremes of modern
aircraft. An example of the application of the method to the longitudinal equations of
motion of an airplane is also presented,

SYMBOLS

Physical quantities in this report are given in the International System of Units (ST)
and parenthetically in U, S, Customary Units, The measurements were taken in
U.S, Customary Units, Factors relating the two systems are presented in reference 7,

A stability matrix (P X P)

Aaij null matrix except for the i-jth element which equals 1
(P X P)

A; ith row of the stability matrix (1 X P)

24 i-jth element of A

ay, 8y, 8z linear acceleration along the X-, Y-, and Z-axes,
respectively, g units

B control matrix (P XQ)

By, . null matrix except for the i-jth element which equals 1

4 (PXQ)

B; ith row of the control matrix (1XQ)

bj; i-jth element of B

C augmented A and B matrices (P X (P + Q)

Gy ith row of the C matrix (1X (P + Q))

c vector of unknown coefficients (m X 1)

cj ith element of the ¢ vector

cg vector of a priori estimates of the unknown

coefficients (m X 1)

Cp vector of actual values of unknown coefficients (m X 1)

D weighting matrix for observation vector (R X R)
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weighting matrix for a priori estimate vector (m X m)

i-jth elements of D; and Dy, respectively

expected value

matrix functional of 7 for Shinbrot method (I X (R-P))

matrix functional of zg for Shinbrot method ({ X P)

method function vector (£ X 1)

jth element of method function vector

partition of matrix relating the state vector to the
observation vector ((R-P) X P)

acceleration due to gravity, m/sec2 (ft/sec2)

vector of observation biases (R X 1)

ith element of g

partition of matrix relating the control vector to the
observation vector ((R-P) X Q)

vector functional of ) for modified least-squares
method ((R-P) X 1)

vector functional of zg for modified least-squares

method (P X 1)

vector functional of u for modified least-squares method

(Q X1)
identity matrix
cost functional or weighted mean~square-fit error

scalar weighting factor (gain) for a priori weighting
matrix

rolling moment divided by the moment of inertia about
the X-axis, rad/sec2

number of time samples
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pitching moment divided by the moment of inertia about
the Y-axis, rad/sec2

number of unknowns in ¢ vector

yawing moment divided by the moment of inertia about
the Z-axis, rad/sec2

vector of measurement noise (R X 1)

ith element of n

number of state variables

roll rate, rad/sec or deg/sec

number of control variables

pitch rate, rad/sec or deg/sec
number of observation variables

yaw rate, rad/sec or deg/sec

total time, sec

intermediate or incremental time, sec

matrix trace operation (sum of diagonal elements)

control vector (Q X 1)

. velocity, m/sec (ft/sec)

covariance matrix of the noise

longitudinal force divided by mass, m/sec2 (ft/sec2)

state vector (P X 1)

ith and jth component of x
side force divided by mass and velocity, rad/sec

observation vector (R X 1)
ith element of the y vector

normal force divided by mass and velocity, rad/sec



Zg

N>

measurement of state variables (P X 1)

measurement related to derivatives of state variables
((R-P) X 1)

measurement of observation vector (R X 1)
angle of attack of X-axis, rad or deg
angle of attack of principal X-axis, rad
angle of sideslip, rad or deg

weighting matrix for hg used in modified least-squares
method (P X P)

weighting matrix for h, used in modified least-squares
method (Q X Q)

increment

first variation

aileron deflection, rad or deg
elevator deflection, rad or deg

rudder deflection, rad or deg

constant control deflection, rad or deg
relaxation coefficient

damping ratio

pitch angle, rad or deg

probability density function of (-)

approximate estimate for the variance determined with
the Cramér-Rao inequality of the i-jth term

estimated variance of wind-tunnel estimates for the
i-jth element of Do

estimate for the variance determined with the
Crameér-Rao inequality

variance of the estimates from an experimental model

(2]



T auxiliary time variable, sec

AY . .
Cramer-Rao bound for the error covariance matrix

bank angle, rad or deg

w frequency, rad/sec
Ve (+) gradient of (-) with respect to ¢
Vg(-) gradient of (-) with respect to g
Subscripts:
d Dutch roll
e extended
i ith TOW Or component
j jth column or component
k iteration index
me measured
0 a nominal or constant value
0450y, 0¢,0¢, partial derivatives with respect to subscripted
p,q,r,V,q, variables
B,¥,©
Superscripts:
i,j index representing time of sample
T matrix transpose

A dot over a quantity denotes the time derivative of that quantity, Principal axes are
used throughout,

Boldface type indicates a vector,

STABILITY-DERIVATIVE DETERMINATION

The task of determining all the stability and control derivatives can be greatly
simplified if it is realized that some of the dynamic modes may be uncoupled for most
aircraft configurations, The longitudinal modes are usually separated from the
lateral-directional modes because the resulting error is small, The bulk of this report

6



deals with the lateral-directional modes, because this estimation problem is more
complex than that for the longitudinal modes. After the proposed technique is fully
developed and evaluated for the lateral-directional modes, an example is given to show
that the method is equally successful for a longitudinal mode,

The model most often used to describe lateral-directional airplane dynamics can
be expressed as a system of linear, constant-coefficient, differential equations in the
following form (refs, 8 and 9):

X (t) = Ax(t) + Bu(t) (1)
where
p(t) p(t)
5,(t) .
r(t) . r(t)
u(t) = | 6,(t) x(t) = x(t) = |
t t
546 B(t) B(t)
o(t) @(t)
Lo L, Lﬁ 0 Laa LGr L60
N N N 0
a= | P8 g= |N6, No. Mg,
o -1 Y Y
0 8 % Yéa Y5r Y5,
1 0 0 0
— - 0 0 0

It should be noted that no state noise is considered in this analysis, The last column
in the B matrix represents the effect of an uncertain bias on p, T, and 8.

Next zg(t) and /z\(t) are defined as the noise-contaminated measurements of x(t)
and x(t), respectively; that is, z4(t) is the noise-contaminated measurement of the

state vector x(t), /z\(t) is the noise-contaminated measurement of x(t), and the con-
trol inputs u(t) are considered to be noise-free. For the remainder of this report,
the time argument of the variables is omitted where the time dependence is clear,

. . A - .
The problem addressed is: Given zg, z, and u, determine certain unknown

elements of the A and B matrices. In airplane dynamics these coefficients of the
linearized equations of motion are the stability and control derivatives which result
from the Taylor's series expansion of the aerodynamic forces and moments,
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Figure 1. Time history of X-15 maneuver.

REVIEW OF PREVIOUS METHODS

To examine previous methods of determin-
ing stability and control derivatives, one typ-
ical flight maneuver was selected and several
methods were applied to analyze the data
obtained from the maneuver. This maneuver
was chosen because all thg\ measurement
signals appearing in zg, z, and u were
available, which is needed in some methods
to estimate all the coefficients., Except for
this stipulation, the maneuver was arbi-
trarily selected and was not known to favor
any of the methods,

The maneuver selected was for the X-15
research airplane (ref. 10) at a hypersonic
flight condition (figs. 1 to 13), Time his-
tories of the maneuver are shown in figure 1,
The control-input time histories apply to all
the data in figures 2 to 8, 10, and 12 and
therefore are not repeated. The S data,

which are used in the subsequent analysis,
were not measured directly in flight, but were
computed from other flight variables by using
the following equation:

_— ) g
Ame = ®Pme ~ Tme * (ayme S cpme> vV

The least-squares and Shinbrot methods
(discussed later) use Bme because the formu-

lation is more convenient with Bm e than

with a and the resulting estimated pa-

Y me
rameters are identical,

Stability derivatives are usually deter-
mined first from wind-tunnel data, However,
because of unavoidable differences between
the wind~tunnel test and flight conditions, the
wind-tunnel values should be considered only
as initial estimates, Figure 2 compares time
histories obtained from flight with those com-
puted by using wind-tunnel values, The dif-
ferences shown offer motivation for deter-
mining coefficients from flight data,



— Flight
50 — —— — Computed
P,
deg/sec 0 ===~
5oL N
10 —
r, -
degisec O [Emmm——
ol 1L 11|
10 —
S O N
40 —
h o O_A\_\/L’“?‘
Y R N, s
o0
deg/sec \k/ =
-60 ’ l I l 1 i
10 —
l:, L Pt
deg/sec? =
TS D I
1_
Ay, § 0 e~
N
0 1 2 3 4 5 6
1, sec

Figure 2. Comparison of X-15 time histories
measured in flight and computed by using
predictions based upon wind- tunnel tests.

Simplified-Equations Method

For selected types of responses the effect
of only a few coefficients dominates, thus
permitting the use of simple expressions to
determine these coefficients. Some of the
expressions (ref. 1) that are used for this
purpose and the types of responses that are
required are as follows:

Ad

N5r ] A—(jr: (rudder pulse)

A ap
Lﬁam —A—gz.i - me-; (aileron pulse)

Ar Ar A .
Néa ~ 35; - Nrm - NPK5% - NBA a (aileron pulse)

Aay

Y ® -%- ZE_ (Dutch roll oscillation)

2
NB ~ wd + OzLB (Dutch roll oscillation)

dér ddg
LB = —L5r = —L5a T (steady sideslip)

Ab,
Lp R _L&a ap (aileron step)

Np~ -2 qwg - Y3 (Dutch roll oscillation)

The notation has been changed from that of
reference 1 to be consistent with the principal
axes system used in the preceding equations
of state, The time-vector method, also dis-
cussed in reference 1, serves as a basis for
the equations in which oscillatory responses
are used,

A partial set of coefficients was obtained
by using equations, such as the preceding,
from the example set of X-15 flight data,
These values (predictions based upon wind-
tunnel values were used to complete the set)
were substituted into the equations of motion,
and time histories were computed, These
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Figure 3. Comparison of X-15 time histories
measured in flight and computed by using
coefficients obtained from flight data by the

method of simple equations.

time histories are compared with those
measured in flight in figure 3, which shows
differences at least as great as for the time
histories computed by using the wind-tunnel
coefficients,

Analog-Matching Method

The equations of motion can be readily
solved by using an analog computer. This
would suggest fitting the measured responses
with the computed responses by manually
adjusting the potentiometers of the analog
computer mechanization, in which the settings
correspond to particular values of the coeffi-
cients. The operation, referred to as analog
matching, is described in detail in refer-
ences 1 and 2, Analog matching was applied tc
the X-15 flight data, with the results shown in
figure 4. Because analog matching is a man-
ual operation, the operator can somewhat
constrain values of some of the coefficients
on the basis of his knowledge of the quality of
the wind-tunnel values and his experience,
that is, a priori information,

By comparing the results shown in figures
3 and 4, it is apparent that the fit has been
improved considerably, Nevertheless, it
would be desirable to automate the fitting proc-
ess, perhaps improving it further as well as
making it more efficient, Regardless of the
method used, the same match can be obtained
with analog matching, because it solves the
same equations, but the effort involved may
be prohibitive,

Least-Squares Method

One approach to determining aerodynamic
derivatives is to minimize the integral square
of the state equation error by substituting the
measured values for the state and its deriva-
tives, that is, minimize the following cost
functional:

T
J=/ (2 - Aeg - Bu)"(2 - Az, - Bu)at (2)
0
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Figure 4. Analog match of X-15 time histories
measured in flight.

To derive an expression for the values of A
and B that minimizes equation (2), let

I
C= A|B]

tr(AB) = tr(BA)

The minimization is achieved by taking the
first variation of the preceding expression,
that is,

63 = -zzr%/oT[—l-f—] QTdQOC‘*Ztr A
and putting
0J =0

The resulting solution requires that, for an
arbitrary 6C,

Then

AL LB o

11



This equation is the solution to the least-squares problem. It has the advantage of a
compact form, but it disguises the independence of each of the equations to be minimized.
This limitation can be illustrated in the following manner. Considering only the first
state equation and minimizing the same cost functional,

T
k) 2
d =\/(; (pme - Lppme - erme - Lﬁﬂme - Laaﬁa - Lérér - L6050> dt

where the subscript me identifies the measured value. A more convenient form may
be obtained by making the following substitutions:

A1=[Lp Ly Ig o]
B, = [L@a Ls_ LGO]

]

T 2
J = p - CF |51 % g
= A Pme 1 [Tu”

Once again taking the first variation and setting the resulting expression equal to zero

gives . {/O,T[zf_] {%S-JTdt}_ZTﬁme [_Z_:J dt

Now C, is the first row of the C matrix, and I.)me is the first element of %2, which

Then

makes it apparent th/gt the elements of th.e first row of the C matrix are independent of
all the elements of Z except the first, Pmes A similar relationship is easily shown

for the other rows of the C matrix, This independence is one of the drawbacks of the
least-squares method, in that only one of the measured state derivatives is used in
determining a given row of the C matrix, If one of the signals has not been measured,
the least~squares method does not provide an estimate of the derivatives related to

that signal, This independence also illustrates that the estimate of one row of the

C matrix is obtained independently of the other rows, and no "trade-off" can be made
between elements in different rows to improve the match,

Figure 5 shows the fit of p, r, and § obtained with the least-squares method.
The fit is considered to be good, Since only p, r, and B were fit, these are the only
time histories shown, It should be noted that the fit of the time histories is not a
solution of the differential equations of motion, It is merely a minimization of the
integral-squared error of the fit of the measured data to a linear model of the system
(that is, point by point in an algebraic sense, ignoring the time-sequential nature of
the data), In other words, only measured state variables and their derivatives are

12



used in the minimization because the differential equations are never solved for the
computed state,

— Flight
1.0 — — —— Computed least-squares fit
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0 AN | | | | |
.08

;U A
| ~

rad/sec _ \// X —
27 | | I !

-.08
0 1 2 3 4 5
t, sec

Figure 5. Least-squares fit of X-15 flight time histories.

The least-squares values of the coefficients were substituted into the A and B
matrices, and a time history was computed and compared, in figure 6, with that meas-
ured in flight, The fit of p, ©, and S is still good, but other variables have drifted
apart, especially ¢, p, and r, These are typical results obtained by using the least-
squares method. The poor fit of the state variables should not be surprising, inasmuch
as the computed solution is not included in the minimization,

Shinbrot Method

In reference 4, Shinbrot showed the existence of similarities in a variety of regres-
sion methods and introduced a general method function, f(t). This can be shown by
starting with the state equation with the measured values zg and 2 denoting the state

and its derivative, then multiplying by a method function and integrating, Thus

[ e
)y fpTdt=C | [--2-- ft)Tat
0 o | ui

The method functions used are those suggested by Shinbrot in reference 4 and have the
form
<21r j t>
1-cos T

e R

13
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where the maximum of j must be greater
than or equal to the number of unknown ele-
ments in C, Then define

AT T/\ T
F =/ zf dt
0

and

It follows that
A
F = FgCT

For this transformation, the solution may be
obtained in the form

(4)
-1 A
cT= [ Fg' FS] Fg' F

It can be readily shown that this method has
the same row independence of C illustrated
for the least-squares method, This method
is similar to the least-squares method and
yields nearly identical results, as shown in
figure 7, in that the computed time histories
also drift away from the measured values,

Modified Least-Squares Method

Some of the difficulties encountered with
the least-squares method can be overcome by
modifying it to include the state vectors in the
error minimization, thus combining the
standard least-squares method with the inte-
grated least-squares method. The integrated
least-squares method is merely the least-
squares formulation with the integral of each
of the variables replacing the variables.
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Figure 7. Comparison of X-15 time histories
measured in flight and computed by using

coefficients obtained from flight data with the
Shinbrot method.

By defining

t
hg(t) = [‘S/ zs(1>d1 + zg ()
0

t
hy (t) = ru/ u(7)dr +u(t)
0

and

t
ﬁ(t)=/ 2 ()dr + 2 (1)
0

where Iy is a (P X P) diagonal matrix and

Mu

vide weighting among the various signals
representing the relative confidence in the
signals, then

LR Rl

or the complete formulation for the minimum
becomes, as in least squares,

T A T T
/ [—h-s~] h'™dt= / bs [1hs) g om
0 hu 0 hu hu
(5)
T -1
oL IR B
0 hy hy 0 hy

Once again it is easily shown that this method
has the same row independence of C shown
by both the least-squares and the Shinbrot
method,

is a (Q X Q) diagonal matrix which pro-

15
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The fit of the computed time history to
that obtained in flight in figure 8 is still not
acceptable. It would, of course, be desirable
to minimize the differences in the time his-
tories. Although this can be done, it will be
shown that the identification problem becomes
nonlinear, requiring some iterative technique,

Modified Newton-Raphson Technique

Once the mathematical model for the sys-
tem has been selected, two items remain to
be specified to identify the system: (1) the
cost functional to be minimized, and (2) an
algorithm to minimize the cost functional, In
some of the methods analyzed these items are
not readily specified. In analog matching,
the cost functional is obscure in that what
constitutes a good fit is primarily a function
of the judgment of the operator. The operator
minimizes his subjective cost functional by
adjusting potentiometers until, in his opinion,
the fit is attained, This procedure can be
time consuming, and the results vary greatly
from operator to operator. The regression
methods discussed alleviate some of the prob-
lems of analog matching in that a cost
functional is specified and is readily mini-
mized because the formulation is linear in the
parameters to be estimated. Unfortunately,
the resulting fit to the measured data is
unsatisfactory. Ultimately, a linear model
is desired with a computed response that best
fits the measured data, It has been demon-
strated that the fit obtained with analog match-
ing is superior to that obtained with the other
methods. This suggests that the cost
functional should reflect the difference
between the computed response based upon
the coefficient estimates and the measured
response, Therefore, more satisfactory
results would be expected if the problem were
posed as one of minimizing a quadratic cost
functional of this difference. Many other
criteria could be proposed, but the quadratic
is the most thoroughly analyzed form and
has the most desirable mathematical char-
acteristics,

To be more specific, consider the



following model:

L L Ls ]
L, Ly Lg 0 0y 5, S
7 In N N 0 H= |N N N
p r B 0, 6, 5,
0 0 Y 0
B Y Y Y
L i i 0, 5. 60_

The non-zero elements of G and H are also elements of A and B, respectively.
The vector y is the set of "output" response quantities:

e ® T
y=[prﬁ¢pray]

Let z denote the measurement of the actual aircraft response quantities corresponding
to y. Although no state noise is assumed, z would not be exactly the same as y
because of measurement errors and differences between the actual and the assumed
linear model (eq. (6)). A reasonable description of the relationship of z and y is

z(t) = y(t) + n(t) +¢

where n(t) represents errors with zero bias, referred to as "noise" and g represents
all bias errors. In summary, x is the model response, y is the model observations,
and z is the actual measurement,

The objective is to minimize the difference between z(t) and y(t) in some sense,
so that an appropriate cost functional is

T T
J =/ [z(t) - y(t)] D, [z(t) - y(t)] dt
0

where D; is a weighting matrix reflecting the relative confidence in the measurements
(similar to the inverse of the covariance of noise), Now that the cost functional has
been completely specified, the only remaining step in the systems identification problem
is to choose an algorithm for minimizing this cost functional.

17



Gradient Method

Probably the simplest minimization technique is the gradient technique, which
changes the coefficients to be estimated by proceeding in the direction of the greatest
decrease of the cost functional. Notationally, it is convenient to define a column
vector, c, of the unknowns to be estimated. The elements of ¢ are some or all of
the unknown elements of A and B (hence, G and H) of the initial conditions x (0)
and of the noise biases g, that is,

=c [aij: bij: gi; X3 (0)]

The gradient of J with respect to the vector ¢ can be expressed in terms of the
gradient of (z -y) as

T T
v.J =2{£ (z ~y)T Dy v, (z—y)} dt (7)

Thus, all that is needed to specify v.J in addition to terms already defined is
Ve (z - y), as follows:

oo (e i e s

(8)
The gradient of z is affected only by the bias terms, The quantity Ve (z - y) can be

expressed in terms of various partial derivatives. These partial derivatives with re-
spect to the individual coefficients of ¢ (aij, bij= gi» Xj (0)) are

-0
I 0
aE-J :
_G- X = X3
02y :
Lo
I [0 1 0
[, [: 4
G X = GJ s= :
9 b o dg; 0
where X; appears in the i + P row of the vector
[, [s ]
o 0 Of~=~ 0
_H— u= 5 G X = E
92jj 0 9 x; (0) 0
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[ 0]
S
9|-== :
2] |
abij u= R
[ 0_

I [0 I 0

Ak da g,

dg; (0) Lé 8 x;(0) 0

where uy appears in the i+ P row of the vector, Thus, only the gradient of x with

respect to ¢ and the gradients of (z - y) with respect to the bias terms g remain,
where

(ep  ap_ ap ]
8Cq 8Cy T 8Cpy
or or . or
8Cy 8Cy 8C

Ve X =
9B 9B __ __ 8.8
9Cy d9Cg 0C
¢ 29 9¢
8¢, 8Cq ~ 7 9Cm

A column is needed for each element of ¢, which includes unknown elements in A and
B, initial conditions, and bias terms,

The elements of the gradient x can be determined in the following manner, If the
state equation is differentiated with respect to ajj, for example,

o x DA 9 x aB/
= 22 x4+ A + (9)
oa.; oa;; 831J
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The solution for % can be expressed as
ij

oa;:

t
0X () =/ eAlt =7) A x(,)ds
1] 0 1

A similar procedure for coefficients in B gives the expression

t -
ox (t) = eA(t T)Bb,, u(r)dr
abij 0 ij

and, when used for elements of the initial conditions x(0), results in

0
Ox(t) _ At |
0x;(0) :
0

where the 1 appears in the ith row. The corresponding partial derivatives with respect
to constant bias errors in measuring the state variables can be expressed as follows:

[0
o(z - y) 0
dg; e

0 |

where the 1 appears in the ith row,

Thus, all the terms in equation (8) have been defined; VeJ can now be evaluated by

using equation (7)., To obtain a gradient solution that minimizes J, the following recur-
sive relation is used:

where the subscript k is the index of the iteration. The value of € can be chosen in
many different ways. One way is to use 70 percent of the value that minimizes the fit
error in one iteration, The gradient method was successful for only a few unknowns
but failed otherwise, Theoretically, each iteration reduces the cost or fit error, but
in practice the reductions become almost infinitesimal. Unfortunately, although the fit
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error is reduced considerably before it stalls, the corresponding values of the unknown
coefficients are not determined with sufficient accuracy, because the minimum is never
reached.

Many methods have been developed for nonlinear minimization, such as direct-
search techniques and accelerated gradient techniques (ref. 11), but for this particular
application a modified Newton-Raphson technique was chosen.

Modified Newton-Raphson Minimization Technique
Minimization based only on flight data, - The Newton-Raphson technique is an

iterative method for finding a zero of a nonlinear function of several parameters, or,
in this instance, a zero of the gradient of the cost functional, that is,

Ved =0

Consider a two-term Taylor's series expansion of V¢J] about the kth value of ck:

Celgpr= Ceb) g + (B 3)gaeyy, (10
with
Ak +1=(®k41 ~ k)
where (Véz J)k is the second gradient of the cost functional with respect to ¢, or the

Hessian matrix, at the kth iteration. If equation (10) is a sufficiently close approxima-
tion, the change in ¢ on the (k+ 1) iteration to make (Vc J)k + 1 approximately

Zero is
-1
Aey =~ [(ch J)k] (VCJ)k (11)

which is the Newton-Raphson algorithm, as shown in the following sketch:

| Tangent line at cy

vedi (© :
\-|—Slope of tangent line = V¢ (V¢ J ),
l |
] c
Ck+1 Cx

This method is much more efficient than the gradient method because it attempts to
predict where the local minimum point is and to step directly to it rather than merely
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stepping in the local downhill direction, However, it is much more complex because of
the computation of the second gradient matrix. This complexity can be reduced signifi-
cantly by an appropriate approximation to the second gradient matrix which results in

a method termed either modified Newton-Raphson or quasi-linearization, It is most
clearly derived by the method of quasi-linearization,

The difference between the measured and computed responses, z(t) - y(t), can be
represented as quasi-linear with respect to a change in the unknown coefficients, that is,

[z (t) - y(t)]k ~ [z(t) y(t)] k-1 T Ve [z(t) - y(t)] k3K (12)

Using this approximation in the cost functional results in the following first and second

gradients:
T T T
Vel = 2{/ (Z’Y)k Dy [Vc(z'}’)]kdt}
0

T
vl = 2/0 [vc (z —y)]k D, [Vc(z —y)]kdt

Now the modified Newton-Raphson algorithm becomes

T T -1 7T T
Acy = ‘{/[vc(z ‘y)]k Dy [Vc(z ‘Y)]k dt} 1/ [V"(z 'y)]k Dy (2 R (13)
0

0

All the terms in equation (13) involve only the first gradients of (z - y), which were
derived previously and are readily computed. Thus equation (13) involves no second
gradients of (z - y) which would appear in the true (Vg J). This greatly reduces the

computation time, and the approximation improves as the solution is approached, All
the preceding terms have been derived for the gradient techniques, so the solution is
readily obtained.

Because the minimization by the Newton-Raphson technique is done in the discrete
case by a digital computer, the discrete approximation transforms the integrals into
summations., Equation (13) becomes

l T . .
T [ve(i-y9) oy (20 -y )] g

1=1

1=1

l T -1
Ac = {Z [Vc(zi ‘yi)] Dy Ve (zi’ yi)}

where the superscripts i and j are the indices indicating the time sample, and I
is the total number of samples,
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Although the difference in notation might disguise the fact, the preceding solution is
the same as that obtained with the Newton-Raphson method if the term involving the
second gradient multiplied by the noise is neglected as suggested by Balakrishnan in
reference 5. The savings in computation is considerable.

All subsequent references to the Newton-Raphson method will be based upon the
modified Newton-Raphson approach to minimization of the integral-squared error.

To keep computer usage to a minimum, no noise biases or initial conditions were
determined for the X-15 data used, thus

cT=<L L. Ly Ly, Lo, Lg, Np Nr N No. No, Noy Yp Yp Y50>

Figure 9 shows the rapid reduction in the weighted fit error, J, when the Newton-
Raphson method is used. For the example shown, only four iterations were necessary.
This represents a computation time of about 7 minutes on the XDS 9300 digital computer
(ref. 12). The Newton-Raphson method has been found to be superior to the gradient
method both in terms of the number of iterations and the computation time required for
the application under discussion.

1600

120 —

100 [—

Fiterror, go |-
J

60 [~

40 —

|terations

Figure 9. Convergence of fit error for the modified Newton-Raphson method.
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Figure 10. Comparison of X-15 time histories
measured in flight and computed by using
coefficients obtained from flight data with the
modified Newton-Raphson method.

Figure 10 shows the computed state time
histories compared with the measured time
histories. The corresponding weighted mean-
square-fit error is 0.2 percent of that obtained
with the least-squares method, Most of the
reduction is attributed to the improved fit of
¢. The fits of p and r are also improved,
as expected, because the cost functional was
chosen on the basis of optimizing with respect
to the integral squared error of the difference
between measured and computed data.

Minimization including a priori informa-
tion, - Often, independent estimates of the
values of the coefficients are available from
wind-tunnel data or previously obtained flight
data, It is desirable to incorporate this a
priori information into the flight data. The
use of the a priori values in the Newton-
Raphson method resembles the procedure
often followed in analog matching in which,
initially, the predictions based upon wind-
tunnel values are used and changes made to
improve the fit are weighted against the depar-
ture from these values, It seems reasonable
then to use the a priori feature with the Newton-
Raphson method, making use of all the infor-
mation available to obtain the estimates and
insuring that no change is made in the deriva-
tives unless there is sufficient information in
the flight data, The procedure used is to ex-
pand the cost expression to include a penalty
for departure from the a priori values, The
expanded cost becomes

T
J =_/0. (z -y)TDl(z -y)dt + (c --co)T K D2(c - cO)
(15)
where c¢( is the vector of a priori estimates
of ec.

Recognizing the solution obtained by using
Newton-Raphson to be of the form

- [vcz J] -1Vc.|

and the contributions to the first and second
gradients due to the additional term to the
cost expression to be Ds (¢ - cy) and Do,

Ac =

respectively, the new expressions become



T

T
V) :z{/ (z-y)TDy [Vc(z—y)]dt} +2 K Dy(e- cg)
0

T
Ve2d =2 Ve ( '
c cz—y) D]_Vc(z—y)dt-!-ZKDz
0

If the a priori information is based upon previously analyzed flight data, the selec-
tion of the Dy matrix can be based upon the relative amounts of data involved and the

expected variance of c¢(. If the a priori values are obtained from wind-tunnel tests, it
becomes necessary to estimate the variance of these values, as discussed in the next

section.

Figure 11 is an example of how the fit error changes as the weighting of the a priori
values is changed. The weighting was varied by changing the weighting factor, K (a
scalar), multiplied by Dg. For a weighting of zero the a priori values are ignored, and

for an infinite weighting the flight data are ignored. Shown in the same figure are two

'15 [ |

lg -20
25 C— ! | | | ]

l

Fit error,
| 100 1

J =2 x(minimum 1)
10 | 1 1 1 A~ |
0 10 100 1000 10, 000 100, 000 oo

K

Figure 11. Effect of a priori weighting on coefficients and the fit error.

coefficients as a function of the same weighting factor. It is noteworthy that the coeffi-
cient N,. changes immediately to its a priori value, but the coefficient LB does not.

It would appear that the estimate of the coefficient N, is weaker in the sense that it

could vary over a wide range with little effect on the fit error.



Figure 12. Comparison of the X-15 time histories
measured in flight and computed by using coeffi -
cients obtained from flight data with the modified
Newton-Raphson method with an a priori weighting
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which doubles the unweighted fit error.
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A weighting factor was used that doubled
the fit error, Although the fit error is nec-
essarily increased when a priori information
is used, figure 12 shows that the agreement
of the computed and measured time histories
is still good. The use of a priori information
in estimating the unknowns has been found to
reduce the scatter of the estimates (especial-
ly when the flight data contain little informa-
tion on a given coefficient) and to reduce the
number of iterations to convergence., How-
ever, more computer time may be required
in selecting the overall gain, K, of the a
priori weighting,

Weighting Matrices

Since the cost functional in equation (15)
contains the weighting matrices, D; and Do,

it should be expected that these matrices play
major roles in the value obtained for each of
the coefficients, There are many ways of
determining the D; and D, weighting

matrices; the following discussion describes
the method found to be most useful in this
study.

A reasonable selection of the weighting
matrix, Dj, can be based upon knowledge of

the statistical properties of the instrumenta-
tion noise. If the noise were stationary,
Gaussian, and white,

1

would be the obvious weighting for mean-
square minimization. In practice the best fit
"obtainable" for a particular quantity was

used as an indication of its noise level, in the
following manner. An estimate of the noise
was made for each variable, and the matrix
was assumed to be diagonal. As more experi-
ence was acquired through using the data, the
diagonal elements were changed if a particu-
lar fit of a given variable produced an average
error smaller than the original estimate. The
new value of the element would be the recipro-
cal of the new minimum integral error squared
in the measurement of that variable, Grad-
ually, a new D; matrix based on the minimum

dyy; =



average error evolved, and further changes were unnecessary.

It should be stressed that much more research is needed in determining a repre-
sentative nondiagonal D, weighting matrix. This can be done adequately only by com-

pletely analyzing the instrumentation used to obtain these measurements, Primarily,
such an investigation would supply a covariance matrix of the noise in the output of a
given instrumentation system, In addition, such information as phase shift, amplitude
attenuation, and nonlinearities of the instrumentation dynamics, both electrical and
mechanical, is critical to any analysis of the data, The more representative the data
are of the true observation y, the more satisfactory the results by any method of esti-
mation. The elements of the D; matrix can readily be determined along with the other
unknowns; although the instrumentation remains the same, a different noise covariance
matrix will result for each maneuver,

The values used for D; are listed in table 1, If part of the data is unusable, the
corresponding element of Dj should be set to zero, This procedure offers an advan-
tage over other methods, such as the least squares or Shinbrot, which require a com-

plete set of data, The integral-squared-error method can determine all unknowns,
even when the data used are incomplete,

TABLE 1.-VALUES USED IN THE D; AND D, WEIGHTING
MATRICES FOR THE X-15 AIRPLANE

i dpii y; | daii ¢j
1 1,530 | p | 0.1445 | Lg,
2 | 1,040,000 | r 1445 | L
3 507,000 | 8 0 | Lgg
4 31,700 | ¢ 522 | L,
5 635 | p 522 | Lp
6 46,800 | r L1445 | Ly
7 5.333 | a, | 14.45 | Ng,
8| ------ - 14.45 | Ngp
9 |------ - 0 | Ngg
0|------ - 815.5 | N
1m|------ - 815.5 | N,
2 |------ - 14.45 | Ny
13 | ------ - 0 | Ys
14 |------ - |18,010 [,
5| ------ - |s.010 |y,

The D, matrix for weighting wind-tunnel estimates would ideally be the inverse of
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the error covariance matrix of the test data from which the estimates were obtained,
inasmuch as this would reflect the relative confidence in each of the a priori values.
Since the covariance matrix was not available, the following method, which is only one
of many justifiable procedures, was used to obtain the Do matrix, No attempt will be

made to show that this method is preferable to other methods. The estimates are

assumed to be independent, which results in D, being a diagonal matrix. Next, on
2
i1’
selected for each of the unknown coefficients. An attempt was made to use the same
variance for similar coefficients (Laa, Lar, and LB’ because they are determined

the basis of experience with wind-tunnel estimates, a wind-tunnel variance, o was

in a similar manner in the wind tunnel), Now D, was determined by taking the recip-
rocal of each variance, —12— and inserting it as the appropriate element along the diag-
of
11
onal of Dy. (These values are shown in table 1.) This fixed the relative weighting

among the individual coefficients, The overall weighting of the wind-tunnel coefficients
to the flight-data-determined coefficients was changed by varying the values of K.

Comparison of Methods

From a comparison of the time histories shown previously, it is evident that the
Newton-Raphson method without the a priori feature provides the best fit of computed
data with the flight time history, and there is only a slight change in the quality of the
fit with the addition of the a priori feature. In addition to the time history fit, it is also
of interest to compare the stability derivatives obtained with the various methods.
These stability derivatives are shown in figure 13 together with derivatives predicted
from wind-tunnel data. Because of the uncertainties in the wind-tunnel predictions as
well as in the flight-determined coefficients, the only definite conclusions that can be
reached regarding the superiority of any of the methods is that the Newton-Raphson
method with the a priori feature provides the closest match of both the flight data and
the a priori values. When the derivatives determined by the Newton-Raphson method
with and without the a priori feature have approximately the same values, it can be
concluded that these are the strong, well-defined derivatives. Thus Lg and Lp, are

strong derivatives., For N, and N5a there is a large difference between the Newton-

Raphson method with and without the a priori feature, which indicates a weakly defined
derivative; similarly, the results from the other methods show little agreement with
one another. In this instance there is not sufficient information in the flight data to
strongly define N,., and the wind-tunnel estimate is as good as any other estimate.

To make a more rigorous comparison, a statistical model was constructed and used
to indicate the relative values of variance in the estimates obtained by using the least-
squares, Shinbrot, and Newton-Raphson methods. Specifically, a time history was
computed, and actual measured flight data were simulated by adding shaped, unbiased
white noise. The noise was approximated as the error, n(t), for a best fit "obtainable"
for each quantity in the actual flight data previously analyzed. The power spectral
densities were determined for each quantity; however, they were approximately the
same, 80 only one statistical representation of the noise was used for all the quantities.
Five time histories were generated which differed only in the specific noise added and
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were analyzed by each of the methods. Estimates of the variance and average value for
each coefficient are shown in figure 14, in which the Newton-Raphson method provides
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Figure 13. Comparison of coefficients determined from X-15 flight data by using several methods of analysis
and predictions based upon wind-tunnel tests.
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Figure 14. Comparison of results of applying several methods of analysis to computed time histories to which
noise has been added.
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the value closest to the actual value for every coefficient. Although the variance for the
Newton-Raphson method is generally larger than that for the least-squares and Shinbrot
methods, all the actual values are included within the +lop band about the mean.

Cramér-Rao Bound

It is of considerable interest in parameter estimation to assess the validity of the
estimates of the unknown parameters. If the actual covariance matrix of the estimated
parameters were known, it would indicate which parameters had been most reliably
estimated. The error matrix of the estimates can be defined as

0= B (emeq) (c=eq)]

where c¢ is the current estimate and cp 1is the "true'" value of the parameter. The

derivation in the appendix shows that this error matrix can be bounded from below by

the matrix Cramer-Rao bound (ref, 5). In other words, the bound provides the minimum
variance with which any of the parameters may be estimated for a given set of data, It
is on this basis that an approximation of the Cramér-Rao bound is used in conjunction
with the Newton-Raphson estimation to assess the amount of confidence to be placed in
the various parameters estimated.

More specifically, by assuming that the estimates obtained by the Newton-Raphson
method are asymptotically unbiased and the noise is a stationary Gaussian white noise
process, a useful form of this bound may be obtained for a direct comparison with the
results of the Newton-Raphson method. These assumptions simplify the expression

for the matrix bound to
z T q) -1
® 2 {z Ve [y‘] D, Y [le} (16)
i=1

This expression is derived in the appendix. Although the specific data being analyzed
do not conform exactly with the preceding assumptions, a comparison of this bound
with the variance determined from the statistical model of the last section would give
some insight into the relative reliability of the estimates. The assumption of asymp-
totically unbiased estimates can be shown to be reasonable because, through use of the
Newton-Raphson method, the first term of equation (14) changes only slightly from

one iteration to another. If no change occurs, this term can be deemed to be independ-

o(z-y)

ent of the noise, Thus, if 5 = 0, the noise is unbiased and Ac is a linear trans-

1

formation of the noise. So, if the noise is unbiased, the estimate of the coefficient is
unbjased. The assumption of the statistics of the noise is not met by the data, but the
actual noise may be such that the Crameér-Rao bound will give additional insight into
the validity of the estimates obtained,

Because the first term in equation (14) is identical to the term derived for the

Cramér-Rao bound determined under the somewhat idealized assumptions, the approxi-
mation of the Crameér-Rao bound is available in the computation of the Newton-Raphson
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minimization. Figure 15 compares the standard deviations obtained by using the
Crameér-Rao bound from the Newton-Raphson computation with those obtained by analyz-
ing the statistical model discussed in the preceding section and shown in figure 14, It

8-

0 l
Lo, Ls, b Lr Lp No,No, Np Nr Ng Yp ¥

Figure 15. Comparison of the standard deviation indicated by the approximation of the Crameér-Rao bound
and by experiment.

should be noted that figure 15 shows that the standard deviation of the experimental
model is greater than that predicted by the application of the Cramer-Rao bound. The
CR
ratios of
9E

vides insight into the relative confidence that might be placed on the estimates,

are fairly well centered about 0, 35. Thus, the theoretical result pro-

If the coefficients of the a priori feature are to be used, it might be anticipated that
the same computation may not represent an estimate of the Cramér-Rao bound. How-
ever, the same type of information may be obtained with the a priori weighting by inter-
preting the calculation in the following way: If the total probability p(z, c¢) were used

instead of p(z |cT) in the derivation in the appendix, an expression similar to that for
the Cramer-Rao bound would be readily found. The cost functional associated with
using the total probability is that used with the a priori feature,

The estimates without a priori information can be considered to have the D, ma-

trix equal to the null matrix, The Cramér-Rao bounds of the variances obtained are
used to assess the reliability of the estimates of the coefficients, That is, if the vari-
ance is large, less confidence is placed in that estimate, In this instance, the variances
obtained are compared with the inverse of the D, matrix, which is infinite for all

coefficients, Therefore, the larger ("closer to infinity") the bound, the less confidence
is placed in that estimate,

Generalizing to the case where Dy is a nonsingular matrix, once again the bound

of the variance should be compared with the inverse of D9, So the computation
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analogous to the Cramér-Rao bound [o .. ] will satisfy D_l > 02,_ . To make proper
g aj4] 2 ajj

use of this information, the values of the bounds closer to the corresponding element

-1
of Dy will correspond to the least reliable estimates. In the limiting case, the values

would be identical. This would indicate that no additional information is contained in
the data. Although the comparison is not made as readily for a non-null D, as for a

null Dy, the information is still contained in the same computation. The result would

not properly be called the Cramér-Rao bound, but the relative reliability of the esti-
mates can still be ascertained,

RESULTS FOR THREE CLASSES OF AIRCRAFT

The Newton-Raphson technique of minimizing the integral-squared error was
applied to aircraft of widely varied geometry and flight regions to demonstrate the
versatility of the method. A light general aviation airplane, a large supersonic air-
plane, and a lifting body vehicle were selected, in addition to the X-15 airplane dis-
cussed previously, to represent the extremes of modern aircraft. In all the vehicles
a variable bias in measurement was allowed for the first three elements of the state
vector (p, r, B). Variable bias was not used on the remaining measurements, nor
were any variable initial conditions used, because the increased accuracy realized
from these additional variables did not justify the computer time needed to solve for
more unknowns. Not all the measurements available on the X-15 airplane were obtain-
able on every other vehicle. Two separate time histories were analyzed simultaneously
on the XB-70 airplane to demonstrate how several time histories at the same flight
condition may be analyzed together.

The D; (table 2) weighting matrices were generated in the manner discussed

earlier. However, the Dy weighting matrix was the same as that used previously,
and only the overall scalar weighting, K, was changed for each vehicle. The overall
weighting used was that which doubled the mean square error attained with zero weight-
ing. As in the X-15 data previously analyzed, the a priori values used were the pre-
dicted values based upon wind-tunnel tests.

Light General Aviation Airplane

To show that the method can be applied to a low-speed, light, conventional airplane,
a rudder maneuver for a light twin-engine (ref, 13) airplane was chosen. In figure 16
a flight time history of this airplane is compared with a time history computed from
the a priori values based primarily on wind-tunnel data, It should be noted that bank
angle, ¢, was not measured and no aileron input was made. Thus, the aileron deriv-
atives were not determined, but the match was still attempted, To obtain the match,
the element of D; corresponding to ¢ was set to zero,

In figure 17 the measured data are compared with the Newton-Raphson solution with

no a priori weighting., It is obvious that the Newton-Raphson solution more closely
approximates the flight data than do the wind-tunnel estimates, The most significant
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TABLE 2. ~VALUES USED FOR THE D; WEIGHTING MATRICES FOR A LIGHT
AIRPLANE, THE XB-70 AIRPLANE, AND A LIFTING BODY VEHICLE

Light airplane XB-70 Lifting body
Lateral - Directional
i Vi A1y di1; dij;
1 p 103, 000 13,400 14,300
2 T 33,300 562, 000 353. 000
3 B 294,000 208,000 289,000
4 @ 0 75,500 9,900
5 p 25,300 0 0
6 r 57,100 0 0
7 ay 13,100 27,700 24,000
Longitudinal

i i | s N
1 I 20,000 | - ----
2 a | ----- 3,431 | @ -----
3 v - o | -----
4 e | ----- o | -----
5 a | ----- goo | -----
6 a, | @ ----- 200 | 0 -----
7 aax, | --=--- o 1! @ @ @ -----
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departure is in the ay
Figure 18 compares the flight
data with the time history com-
puted by using the Newton-Raphson
method with an overall a priori
weighting of K= 1,0, The fit is
improved somewhat over that in
figure 17 in some of the signals
but is poorer in others, including
a..
y
Figure 19 is a summary of
the coefficients obtained by the
three different methods, It should
be noted that the coefficients used
for the a priori values of Lp, Ly,

trace,.

Np, and N, were computed from

the vehicle geometry and other
aerodynamic characteristics and
not obtained from wind-tunnel
data, The wind-tunnel fit and the
a priori weighted fit agree fairly

well except for Lg, Ly, and YB'

The coefficient Lﬁ is particu-

larly interesting, in that it was
forced away from the a priori
value in order to improve the
correlation with the other coeffi-
cients, It appears that there is a
significant amount of information
in the flight data to indicate that
Yp should not actually be at the

a priori value, Also, it is inter-
esting to note that Lp, Np, and
N5r are at the a priori value
when weighted and show a signi-
ficant departure when unweight-
ed, This supports the conclusion
that little information on these
coefficients is contained in the
data, Although this might be attrib-
uted to the relative weighting in
the Dy matrix, which certainly
is a primary factor, Lﬁ and

N., exhibited the opposite be-

p
havior for the X-15 airplane
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Figure 17. Comparison of light airplane time histories measured in flight and computed by using coefficients
obtained from flight data with the modified Newton-Raphson method without a priori weighting. K = 0.
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Figure 18. Comparison of light airplane time histories measured in flight and computed by using coefficients
obtained from flight data with the modified Newton-Raphson method with an a priori weighting which doubles
the unweighted fit error. K = 1.0.
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Figure 19. Comparison of light airplane coefficients determined from flight data by using a modified
Newton-Raphson method and from a priori estimates.

data which had the same relative weighting. This points up once again the need for
more information on the covariance matrix of the wind-tunnel data which are intuitively
the values desired for the Dy matrix, Of course, the covariance matrix of wind-

tunnel estimates would be different for each vehicle,

Large Supersonic Airplane

The large, supersonic-cruise XB-70 airplane (ref. 14) was chosen to represent

this extreme in aircraft. The maneuvers selected consisted of an aileron, éa, maneu-

ver followed by a rudder, &,., maneuver at a later time in the same flight at essentially

the same flight condition. The two maneuvers were analyzed simultaneously. Fig-

ures 20(a) and 20(b) compare the flight time histories of the two maneuvers with the com-
puted time histories based upon wind-tunnel estimates modified for elasticity effects

(a priori). The p and r signals were not measured, but the match was obtained by
setting the corresponding elements of D equal to zero (table 2). In contrast to the

fit for the light airplane, the agreement is poor. There is considerable drift in all the
signals largely because of the unknown bias in the controls, except ¢ and r, and the
amplitudes are vastly different on the p and B signals,,

The ability to match both time histories simultaneously would be a distinct advan-

tage over some of the current methods of obtaining coefficients., With these techniques
the control derivatives Lg ., N§.. and Yg,, could not be determined from the time
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(a) First maneuver.

Figure 20. Comparison of the XB-70 time histories measured in flight and computed by using a priori values. K = o.
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Flight
— — — Computed

P _JI\ N\ N o pre

’ 0 ~——
deg/sec N’
10 M LT

2 —

y /r, 0 .__v/\ /\v/\v_—.\
e LT N

| Y R R I
2.__

BdegO"/\ /\ . U
" S

@ deg 0

O T T Y O O
0 2 4 6 8 10 12 14 16 18 20 22

t, sec

(a) First maneuver.
Figure 21. Comparison of the XB-70 time histories measured in flight

and computed by using coefficients obtained from flight data with the
modified Newton-Raphson method without a priori weighting. K = 0.
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history in figure 20(a), so these
values had to be fixed at some a
priori value while the estimates
were obtained, A similar situa
tion exists for L5a, N5a, and

Yaa in the time history of fig-

ure 20(b). The net result of
these techniques is a different
set of control derivatives for
two maneuvers known to be at
the same flight condition, This
could be alleviated rather labo-
riously by repeating the proce-
dure several times, each time
updating with the most recently
obtained control derivative,

The problem can be elimi-
nated with the Newton-~-Raphson
method by recognizing in equa-
tion (14) that the summations
may be continued for more
points if corrections are made
for the initial conditions at each
of the discontinuities where a
new time history is started,

This method was used to obtain
the comparison of flight data

with data computed by using the
Newton-Raphson method without
a priori weighting in figures 21(a)
and 21(b), The match is consid-
ered to be good, and little could
be suggested to improve it,

Figures 22(a) and 22(b) com-
pare the two flight time histories
with the computed time histories
based upon the estimates ob-
tained by the Newton-Raphson
method with the a priori weight-
ing set at K= 80, The fit would
still be considered good, al-
though some phase shift is now
apparent, particularly in the
r, B, and ay traces,

Figure 23 is a summary of
the estimates obtained by using
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Figure 22. Comparison of the XB-70 time histories measured in flight and computed by using coefficients obtained
from flight data with the modified Newton-Raphson method with an a priori weighting which doubles the unweighted
fit error. K = 80.
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the three different methods, It is significant that L and Y,B

P’ Lﬁas NB; Nérs Yps
are approximately the same for all three methods, but LB’ Lér, and N@a are rela-

tively unaffected by the a priori weighting, In contrast, in figure 13 for the X-15 air-
plane it was noted that Ng was readily changed to the a priori value and in figure 19
a

for the light airplane Lg_ was easily changed to equal the a priori value, Thus, differ-
g O

ent combinations of derivatives appear to be strong or weak for each maneuver analyzed,
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Figure 23. Comparison of XB-70 coefficients determined from flight data by using a modified Newton-Raphson method
and from a priori values.

Lifting Body Vehicles

Lifting body reentry vehicles (ref. 15) represent a wingless aircraft with somewhat
unusual aerodynamic characteristics. The lifting body maneuver selected for analysis
is a combination aileron and rudder maneuver,

Figure 24 is a comparison of time histories obtained from flight data and computed
from the predictions based upon wind-tunnel (a priori) estimates. The p and t sig~
nals were not measured, The drift of the computed signals is severe, probably largely
because of biases in the control measurements.

Figure 25 compares flight data with data computed by using the Newton-Raphson
method without a priori weighting. The fit is good on p, ¢, and ay. but there is some

phase shift in r and 3.
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a priori values. K = .

45



—— Flight

g — —— Computed

%'dego - B A O
Y I N N R
4— /\

br’dego “v —— T ————
9% I Y N I I R O O O B B I
20 — 2

P o o

g
=
~~p

i<

Figure 25. Comparison of lifting body vehicle time histories measured in flight and computed by using coefficients
obtained from flight data with the modified Newton-Raphson method without a priori weighting. K = 0.
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In figure 26 flight data are compared with data computed by using the Newton-

Raphson method with an a priori weighting of K = 22,

The fit is still fairly good, but

some of the maximum excursions fail to match,

a)hg 0

— Flight
— —— Computed

Figure 26. Comparison of lifting body vehicle time histories measured in flight and computed by using coefficients
obtained from flight data with the modified Newton-Raphson method with an a priori weighting which doubles the

unweighted fit error. K =

22,
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Figure 27 is a summary of the coefficient estimates obtained by using the three
methods. For this vehicle Lp, LB’ Nﬁ’ N5r’ Yp, and YB are approximately the

same for all three methods. The coefficients Np and N‘Sa appear to remain near the

unweighted estimates in spite of the weighting.
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Figure 27. Comparison of lifting body vehicle coefficients determined from flight data by using a modified Newton-
Raphson method and from a priori values.

Summary of Results for Various Vehicles

Even though the same relative weighting in the Dy matrix was used for all four ve-
hicles, different coefficients in each case are affected by that same weighting, Although
this does not indicate that the Dg matrix is adequate, it does show that the information

in the data primarily determines the estimate of the coefficient. This is a desirable
characteristic of the technique, inasmuch as it departs from the a priori value only if
the measured data contain information contradictory to the a priori coefficients,

In summary, the application of the Newton-Raphson method to the four vehicles
resulted in (1) a good fit of the computed data with the flight data, (2) a set of reason-
able derivatives, and (3) the a priori option which indicated the coefficients to place
confidence in,

APPLICATION TO SHORT-PERIOD LONGITUDINAL MODE

I I I
With x = Ax + Bu and y =[‘é€]x + [‘ﬁ—]u as the constant coefficient differential
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equation, the Newton-Raphson method was used on the so-called short-period longitu-
dinal aircraft mode where

5 q g X
u= ¢ x= | ¢ X = C.! y= J
5 v v %
i o e ax
Mq M, MV 0 Mﬁe M60
Zq Zy VAT Ze ' Zée ZGO
A= B=
i 1 0 0 0 LO 0
- -
G= 0 Za 0 0 H= Zée 260
0 Xa 0 0 Xée XGO

The coefficients in G and H are alsoin A and B. Because only the short-period
mode was analyzed, only the elements of the first two rows and columns of the A and
B matrices and the biases on the state variables q and a were variable.

The XB-70 (ref. 14) flight data were used for this part of the analysis, Figure 28
is a comparison of the flight-measured data and data computed from the wind-tunnel
‘predicted (a priori) estimates, Only the q, o, d, and a, signals were used, and the

corresponding elements in the D; (table 2) matrix were set to zero for the other sig-
nals. The fit is fairly good, although some departure is noted in all the signals.

Figure 29 compares the flight data with the data computed by using the coefficients
obtained from the Newton-Raphson method without a priori weighting. The fit is ex-
tremely good for all the signals; very little could be suggested to improve it,

Figure 30 compares the flight data with the computed time history based on coeffi-
cients obtained with the Newton-Raphson method with an a priori weighting of K = 0, 03,
The fit is still good, but the q signal shows a small departure near the maximum
excursions. The coefficients are now weighted toward the a priori prediction, thus this
is a satisfactory compromise.
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The coefficients obtained by the three methods are summarized in figure 31, The
coefficients agree well except for Mq, M5e, and Zﬁe. The a priori weighting tends to

bring these quantities toward the wind-tunnel values. The initial peak on a, and @ in

figure 28 showed the computed values to be larger, so it is obvious that the data contain
information contrary to the wind-tunnel values, One apparent advantage in determining
a smaller number of unknowns is that a visual interpretation of the time histories can be
maintained for the effect of each of the coefficients. This gives some confidence that the
a priori feature of this method is performing the same function for more unknowns,
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Figure 28. Comparison of XB-70 longitudinal time Figure 29. Comparison of XB-70 longitudinal time
histqriqs measured in flight and computed by using histories measured in flight and computed by using
a priori values. K = o« . coefficients obtained from flight data with the
modified Newton-Raphson method without a priori
weighting.
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IMPROVING MANEUVERS

In future studies of coefficient determi-
nation, better maneuvers should be defined
in order to maximize the amount of infor-
mation contained in the data. The data
analyzed in this report were generated
specifically for existing analysis techniques.
This generally entailed separating data
into various segments, such as one in which
only one control was moving and another
with no input so the zero input dynamics
appeared clearly. Because the stability
and control coefficients are needed for
sophisticated research vehicles which only
briefly maintain a given flight condition,
these types of maneuvers are difficult to
obtain,

Heuristically, certain types of maneu-
vers can be defined that would increase the
information content of the data. If no a
priori information about the coefficients
were available, white noise would be desir-
able as the control input to insure that all
frequencies were represented in the input.
Knowledge of the coefficients implicitly pro-
vides knowledge of the frequency of the
modes being investigated., It might be
assumed that the control input should resem-
ble a frequency sweep in the frequency
range of interest. In addition, the ampli-
tude of the resultant maneuver should be in
the linear range of the coefficients, but the
motions should be large to minimize the
effect of the noise., In summary, intuition
suggests a frequency-sweep control input,
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— -.05 -0 (K =0.03)
| 0oL

Figure 31. Comparison of XB-70 longitudinal coefficients determined from flight data by using a modified Newton-
Raphson method and from a priori values.
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large motion in the maneuver, and linear responses.
CONCLUDING REMARKS

Stability derivatives or coefficients of the state equations were determined by using
several methods. An example set of X-15 lateral-directional flight data was analyzed by
using simplified-equations, analog-matching, least-squares, and Shinbrot methods. The
same set of flight data was analyzed by using a gradient method to find the set of coeffi-
cients that would minimize the integral-squared error between the measured state and
that computed by using the coefficients obtained with the same control input, Difficulties
in convergence were encountered when there were more than a few unknowns.

A modified Newton-Raphson (quasi-linearization) method of minimization was used
with success to solve the convergence problem, The resulting fit of the flight data was
clearly superior to that of the least-squares and Shinbrot methods. One important ad-
vantage of the Newton-Raphson method is that it is not necessary that all components of
the state variables and their time derivatives be measured,

The use of a priori values (for example, values predicted from wind-tunnel data) in
the Newton-Raphson method resulted in estimates that made full use of all available
information. When the a priori option was used, the coefficients that were only weakly
determined by using only flight data approached their a priori values and the fit error
increased slightly. This was found to be an effective way of utilizing previously ana-
lyzed data together with new data to update the estimates of the coefficients,

A model statistically similar to the flight data was constructed and used, and the
values for the coefficients were determined by using the least-squares, Shinbrot, and
Newton-Raphson methods, The Newton-Raphson method was superior to all other
methods for the example considered,

An expression was derived with the Cramér-Rao inequality to obtain a bound for the
error covariance matrix for an idealized case, The results of this bound were compared
with the variances obtained from the statistical model. The Crameér-Rao bound was
found to give insight into the reliability of the estimates obtained with the modified
Newton-Raphson method,

To demonstrate that the Newton-Raphson method was generally applicable to a wide
range of modern aircraft, it was applied also to a light general aviation airplane, a
large supersonic airplane, and a lifting body vehicle, The method proved to be satis-
factory for each of the maneuvers analyzed and for two maneuvers made at the same
flight condition which were analyzed simultaneously,

The Newton-Raphson technique was applied to longitudinal equations of motion of an
airplane and was found to be successful for the short-period longitudinal mode analyzed.

To obtain better estimates of the coefficients of the state equations more research
is needed to define the weighting matrices used in the cost functionals and the types of
maneuvers needed to maximize the information contained in the data,

Flight Research Center,
National Aeronautics and Space Administration,
Edwards, Calif., October 4, 1971,
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APPENDIX
CRAMER-RAO BOUND

In an identification problem it is useful to have a bound on the error covariance
matrix. By making several assumptions about the noise and the estimates of the coeffi-
cients, some indication of the reliability of the estimates can be obtained by applying
the Crameér-Rao inequality (ref. 5). By assuming the noise to be Gaussian and defining
an extended noise vector, ng, formed by stacking subsequent (R X 1) noise vectors

sequentially with increasing time, the probability density function can be represented as

1 _ T vor—1
Pe) "B p © /208 W' ne]
21T 2 ]WI

where
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I
= I !
I
]

)
]
iy Oy
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l

and the superscript i represents the time of the sample, [ is the total number of
samples, and W is the covariance matrix of the noise, ne.

For the noise, ne = Ze-Ye, the conditional probability density function can easily
be shown to be
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where z, is the sampled data vector and y, is the sampled true state vector as

follows: — -
ol ] .y_l
22 y2
g = :i Ye = -

zl-l yl -1

X RAN

53



APPENDIX

and where c is the true value of the estimate and the superscript i represents the

time index of the sample. If, in addition, the estimate of ¢ is assumed to be asymp-
totically unbiased, the Cramér-Rao bound can be written as

¢ = E{(c - cT)(c - cT)T}

>{E { [vc log p(zg| CTZI T |:Vc log p(ze | cTE' % }—1

where the expectation E{} is with respect to z¢

-1
T T
T -1 -
’ [Vc veT W (26 = ve) (e = ve) WY ye]
Substituting ne = zg5 - Ye,
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c Ye Mg Ng c Ye

By further assuming that the noise is also white, the representation for Wl becomes
block diagonal such that
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APPENDIX
where Di is (RXR) and W is (IR X [R), With this assumption the last equation
simplifies to
-1

L AR ,
® 2CE|2 v.|yl| D! nin! D!V |yl
i=1

Interchanging the summation with the expected value and noting that only the noise ni
is a function of z1,

-1

/4 " 1 . LT . .
exd 5w [o] o5 fatar"} oy
i=1
Noting for the assumption of white noise that
. LT -1
E{nlnl } =[D1]

then

T -1

l . . .
22X Vc[yl} D! v, [yl]
i=1

If, in addition, stationarity of the noise is assumed, then

D=Di =D forall i and j

Thus, the desired result for the matrix Cramér-Rao bound, ¢, of the error covariance
matrix becomes
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